Similarity-based Multi-label Learning

نویسندگان

  • Ryan A. Rossi
  • Nesreen K. Ahmed
  • Hoda Eldardiry
  • Rong Zhou
چکیده

Multi-label classification is an important learning problemwith many applications. In this work, we propose a principled similarity-based approach for multi-label learning called SML. We also introduce a similarity-based approach for predicting the label set size. The experimental results demonstrate the effectiveness of SML for multi-label classification where it is shown to compare favorably with a wide variety of existing algorithms across a range of evaluation criterion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

Instance Similarity Deep Hashing for Multi-Label Image Retrieval

Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Recently, many deep hashing methods have been proposed and shown largely improved performance over traditional featurelearning-based methods. Most of these methods examine the pairwise similarity on the semantic-level labels, where the pairwise similarity is generally defined in a hard-a...

متن کامل

Multi-label Active Learning Based on Maximum Correntropy Criterion: Towards Robust and Discriminative Labeling

Multi-label learning is a challenge problem in computer vision fields. Since annotating a multilabel instance costs greatly, multi-label classification has become a hot topic research. State-of-theart active learning methods either annotate all the relevant samples without diagnosing discriminative information in the labels or annotate only limited discriminative samples manually, that has weak...

متن کامل

Instance-Level Label Propagation with Multi-Instance Learning

Label propagation is a popular semi-supervised learning technique that transfers information from labeled examples to unlabeled examples through a graph. Most label propagation methods construct a graph based on example-to-example similarity, assuming that the resulting graph connects examples that share similar labels. Unfortunately, examplelevel similarity is sometimes badly defined. For inst...

متن کامل

Deep Multi-label Hashing for Large-Scale Visual Search Based on Semantic Graph

Huge volumes of images are aggregated over time because many people upload their favorite images to various social websites such as Flickr and share them with their friends. Accordingly, visual search from large scale image databases is getting more and more important. Hashing is an efficient technique to large-scale visual content search, and learning-based hashing approaches have achieved gre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.10335  شماره 

صفحات  -

تاریخ انتشار 2017